432 research outputs found

    GONUTS: the Gene Ontology Normal Usage Tracking System

    Get PDF
    The Gene Ontology Normal Usage Tracking System (GONUTS) is a community-based browser and usage guide for Gene Ontology (GO) terms and a community system for general GO annotation of proteins. GONUTS uses wiki technology to allow registered users to share and edit notes on the use of each term in GO, and to contribute annotations for specific genes of interest. By providing a site for generation of third-party documentation at the granularity of individual terms, GONUTS complements the official documentation of the Gene Ontology Consortium. To provide examples for community users, GONUTS displays the complete GO annotations from seven model organisms: Saccharomyces cerevisiae, Dictyostelium discoideum, Caenorhabditis elegans, Drosophila melanogaster, Danio rerio, Mus musculus and Arabidopsis thaliana. To support community annotation, GONUTS allows automated creation of gene pages for gene products in UniProt. GONUTS will improve the consistency of annotation efforts across genome projects, and should be useful in training new annotators and consumers in the production of GO annotations and the use of GO terms. GONUTS can be accessed at http://gowiki.tamu.edu. The source code for generating the content of GONUTS is available upon request

    Selection-based design of in silico dengue epitope ensemble vaccines

    Get PDF
    Dengue virus affects approximately 130 countries. 25% of infections result in febrile, self‐limiting illness; heterotypic infection results in potentially fatal Dengue Haemorrhagic Fever or Dengue Shock Syndrome. Only one vaccine is currently available. Its efficacy is very variable. Thus, to target Dengue, we used an innovative immunoinformatic protocol to design a putative epitope ensemble vaccine by selecting an optimal set of highly‐conserved epitopes with experimentally‐verified immunogenicity. From 1597 CD4+ and MHC II epitopes, 6 MHC Class I epitopes (RAVHADMGYW, GPWHLGKLEM, GLYGNGVVTK, NMIIMDEAHF, KTWAYHGSY, WAYHGSYEV) and 9 MHC Class II epitopes (LAKAIFKLTYQNKVV, GKIVGLYGNGVVTTS, AAIFMTATPPGSVEA, AAIFMTATPPGTADA, GKTVWFVPSIKAGND, KFWNTTIAVSMANIF, RAIWYMWLGARYLEF, VGTYGLNTFTNMEVQ, WTLMYFHRRDLRLAA) were selected; this candidate vaccine achieved a world population coverage of 92.49%

    Formalization of taxon-based constraints to detect inconsistencies in annotation and ontology development

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Gene Ontology project supports categorization of gene products according to their location of action, the molecular functions that they carry out, and the processes that they are involved in. Although the ontologies are intentionally developed to be taxon neutral, and to cover all species, there are inherent taxon specificities in some branches. For example, the process 'lactation' is specific to mammals and the location 'mitochondrion' is specific to eukaryotes. The lack of an explicit formalization of these constraints can lead to errors and inconsistencies in automated and manual annotation.</p> <p>Results</p> <p>We have formalized the taxonomic constraints implicit in some GO classes, and specified these at various levels in the ontology. We have also developed an inference system that can be used to check for violations of these constraints in annotations. Using the constraints in conjunction with the inference system, we have detected and removed errors in annotations and improved the structure of the ontology.</p> <p>Conclusions</p> <p>Detection of inconsistencies in taxon-specificity enables gradual improvement of the ontologies, the annotations, and the formalized constraints. This is progressively improving the quality of our data. The full system is available for download, and new constraints or proposed changes to constraints can be submitted online at <url>https://sourceforge.net/tracker/?atid=605890&group_id=36855</url>.</p

    InterMitoBase: An annotated database and analysis platform of protein-protein interactions for human mitochondria

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The mitochondrion is an essential organelle which plays important roles in diverse biological processes, such as metabolism, apoptosis, signal transduction and cell cycle. Characterizing protein-protein interactions (PPIs) that execute mitochondrial functions is fundamental in understanding the mechanisms underlying biological functions and diseases associated with mitochondria. Investigations examining mitochondria are expanding to the system level because of the accumulation of mitochondrial proteomes and human interactome. Consequently, the development of a database that provides the entire protein interaction map of the human mitochondrion is urgently required.</p> <p>Results</p> <p>InterMitoBase provides a comprehensive interactome of human mitochondria. It contains the PPIs in biological pathways mediated by mitochondrial proteins, the PPIs between mitochondrial proteins and non-mitochondrial proteins as well as the PPIs between mitochondrial proteins. The current version of InterMitoBase covers 5,883 non-redundant PPIs of 2,813 proteins integrated from a wide range of resources including PubMed, KEGG, BioGRID, HPRD, DIP and IntAct. Comprehensive curations have been made on the interactions derived from PubMed. All the interactions in InterMitoBase are annotated according to the information collected from their original sources, GenBank and GO. Additionally, InterMitoBase features a user-friendly graphic visualization platform to present functional and topological analysis of PPI networks identified. This should aid researchers in the study of underlying biological properties.</p> <p>Conclusions</p> <p>InterMitoBase is designed as an integrated PPI database which provides the most up-to-date PPI information for human mitochondria. It also works as a platform by integrating several on-line tools for the PPI analysis. As an analysis platform and as a PPI database, InterMitoBase will be an important database for the study of mitochondria biochemistry, and should be particularly helpful in comprehensive analyses of complex biological mechanisms underlying mitochondrial functions.</p

    The Generation Challenge Programme comparative plant stress-responsive gene catalogue

    Get PDF
    The Generation Challenge Programme (GCP; www.generationcp.org) has developed an online resource documenting stress-responsive genes comparatively across plant species. This public resource is a compendium of protein families, phylogenetic trees, multiple sequence alignments (MSA) and associated experimental evidence. The central objective of this resource is to elucidate orthologous and paralogous relationships between plant genes that may be involved in response to environmental stress, mainly abiotic stresses such as water deficit (‘drought’). The web-based graphical user interface (GUI) of the resource includes query and visualization tools that allow diverse searches and browsing of the underlying project database. The web interface can be accessed at http://dayhoff.generationcp.org

    The Biofuel Feedstock Genomics Resource: a web-based portal and database to enable functional genomics of plant biofuel feedstock species

    Get PDF
    Major feedstock sources for future biofuel production are likely to be high biomass producing plant species such as poplar, pine, switchgrass, sorghum and maize. One active area of research in these species is genome-enabled improvement of lignocellulosic biofuel feedstock quality and yield. To facilitate genomic-based investigations in these species, we developed the Biofuel Feedstock Genomic Resource (BFGR), a database and web-portal that provides high-quality, uniform and integrated functional annotation of gene and transcript assembly sequences from species of interest to lignocellulosic biofuel feedstock researchers. The BFGR includes sequence data from 54 species and permits researchers to view, analyze and obtain annotation at the gene, transcript, protein and genome level. Annotation of biochemical pathways permits the identification of key genes and transcripts central to the improvement of lignocellulosic properties in these species. The integrated nature of the BFGR in terms of annotation methods, orthologous/paralogous relationships and linkage to seven species with complete genome sequences allows comparative analyses for biofuel feedstock species with limited sequence resources

    PINOT: an intuitive resource for integrating protein-protein interactions

    Get PDF
    The past decade has seen the rise of omics data, for the understanding of biological systems in health and disease. This wealth of data includes protein-protein interaction (PPI) derived from both low and high-throughput assays, which is curated into multiple databases that capture the extent of available information from the peer-reviewed literature. Although these curation efforts are extremely useful, reliably downloading and integrating PPI data from the variety of available repositories is challenging and time consuming. We here present a novel user-friendly web-resource called PINOT (Protein Interaction Network Online Tool; available at http://www.reading.ac.uk/bioinf/PINOT/PINOT_form.html) to optimise the collection and processing of PPI data from the IMEx consortium associated repositories (members and observers) and from WormBase for constructing, respectively, human and C. elegans PPI networks. Users submit a query containing a list of proteins of interest for which PINOT will mine PPIs. PPI data is downloaded, merged, quality checked, and confidence scored based on the number of distinct methods and publications in which each interaction has been reported. Examples of PINOT applications are provided to highlight the performance, the ease of use and the potential applications of this tool. PINOT is a tool that allows users to survey the literature, extracting PPI data for a list of proteins of interest. The comparison with analogous tools showed that PINOT was able to extract similar numbers of PPIs while incorporating a set of innovative features. PINOT processes both small and large queries, it downloads PPIs live through PSICQUIC and it applies quality control filters on the downloaded PPI annotations (i.e. removing the need of manual inspection by the user). PINOT provides the user with information on detection methods and publication history for each of the downloaded interaction data entry and provides results in a table format that can be easily further customised and/or directly uploaded in a network visualization software
    corecore